

Thermodynamics in Quantum Systems

Hyunggyu Park (KIAS)

Talk at KIAS (Feb. 21, 2014)

QUC Inaugural Conference : Quantum Challenge

Quantum Challenge!!

Thermodynamics?

Nonequilibrium processes

Thermodynamic 2nd Law

Fluctuation Theorems

Entropy

Heat

Information

Work

Open Quantum Systems

Environmental Reservoirs

Markovianization

Does Quantum Mechanics Flout the Laws of Thermodynamics? By Vlatko Vedral | June 1, 2011 | (Nature)

- Landauer principle & entanglement
- Global & local erasing / negative entropy

QUANTA MAGAZINE

A New Physics Theory of Life


Jeremy England, a 31-year-old physicist at MIT, thinks he has found the underlying physics driving the origin and evolution of life.

- Replication dynamics sets a higher lower bound for the entropy production (dissipation energy or heat)
 - Generalized 2nd laws

Brief history of FT (I)

- Evans, Cohen, Morris (1993) observation of FT in molecular dynamics simulations on fluid systems
- Gallavotti and Cohen (1995) analytic derivation of FT in "deterministic" systems (NEQ steady state)

$$\frac{P(\Delta S)}{P(-\Delta S)} = e^{\Delta S} \quad \text{(Detailed FT)} \quad P(\Delta S)$$

Gallavotti-Cohen symmetry

$$\langle e^{-\Delta S} \rangle = 1 = \int d(\Delta S) P(\Delta S) S^{-\Delta S}$$
 (Integral FT)

- Jensen's inequality $(\langle e^x \rangle \geq e^{\langle x \rangle})$ leads to $\langle \Delta S \rangle \geq 0$.
 - Thermodynamic 2nd law is a consequence of $\langle \mathcal{GV} \rangle$ sympletry (FT).
- * Special NEQ pocesses, NEQ steady state

with $y = x - \langle x \rangle$

Brief history of FT (II)

• Jarzynski (1997)

$$\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$$

FT in Hamiltonian systems (work-free energy relation)

• Kurchan (1998)

FT in Langevin equation approach for stochastic systems

• Lebowitz and Spohn (1999)

★ Bochkov/Kuzovlev (1977)

FT in master equation approach for stochastic systems * Kawasaki (1967)

• Crooks (1999)

DFT for stochastic systems

- Hatano and Sasa (2001)
- Speck/Seifert/vdBroeck (2005)
- Speck/Seifert (2007)
- Sagawa/.... (2008)
- Our group/Spinney/Ford (2012)

$$\frac{P_F(W)}{P_R(-W)} = e^{\beta W - \beta \Delta F}$$

two independent FT

$$\Delta S = \Delta S_{hk} + \Delta S_{ex}$$

non-Markovian, non-Gaussian

Information entropy

odd parity

• Experiments: Bustamante, Ciliberto (2002,2005), ...

Brief history of FT (III)

- ★ Quantum FT
- Kurchan/Tasaki (2000)

DFT in quantum Hamiltonian systems (work-free energy relation)

- Jarzynski/Wojcieck (2004)
- Talkner, Lutz, Hänggi (2007)
- Talkner, Campisi, Hänggi (2009)

DFT for heat and work in Open quantum systems (weak coupling)

• Campisi, Talkner, Hänggi (2009)

DFT for work in Open quantum systems (strong coupling)

Open quantum system?

How to define Entropy or heat? Entanglement?

Irreversibility out of reversible dynamics?

Stochastic quantum thermodynamics?